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Abstract. A non-trivial, perturbative solution of the generalised Raman-Nath equation 
is obtained and its meaning clarified. The connections with earlier work and with possible 
physical applications are discussed. 

1. Introduction 

The so-called Raman-Nath (RN)  equations were introduced in physics by Raman and 
Nath (1936) while analysing light diffraction by ultrasounds (see also Berry 1966). 
They belong to the class of recursive differential equations and are therefore difficult 
to solve. They are connected to the Mathieu equation and are relevant to a wide 
variety of physical phenomena. Many authors use the RN equations and have tried 
to solve them. 

To the best of our knowledge, in only a few limiting cases have analytical solutions 
actually been found. It would therefore be highly desirable to determine explicit 
solutions for the most general type of equations, even if these solutions were of a 
perturbative nature, since they would still apply to many real physical situations. 

A complete listing of all the works dealing with these equations, including special 
cases, would be quite lengthy. We will only mention the papers by Stenholm and 
Bambini (1981) and Fedorov (1981), who showed that the quantum electron dynamics 
in free electron lasers can be described by RN equations. Similarly Becker and McIver 
(1982) used them in the study of Cerenkov stimulated emission. Furthermore Bern- 
hardth and Shore (1981) and Arimondo e t a f  (1981) employed RN equations to account 
for the coherent deflection of atomic and molecular beams in laser standing waves, 
the so-called ‘optical’ Stern-Gerlach experiment. Finally the same system of equations 
is widely employed to study the interaction of a multi-level system with radiation 
(Fedorov 1967a, b, Eberly et af 1977, Shore and Eberly 1978, Letokhov and Makarov 
1976). 

In this paper we present a new perturbative approach to the problem, which allows 
us to obtain an explicit analytical solution to the generalised RN equations in first 
order in the expansion parameter. We believe this to be the first time such a result 
has been presented in the literature on the subject. In principle our method can be 
used to all orders in the expansion parameter. We plan to devote a forthcoming paper 
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to a detailed analysis of the analytical results presented here, in the context of the 
various physical situations we mentioned previously. 

The outline of the paper is the following. In $ 2 we introduce the RN equations 
and present a new method of solution for the 'unperturbed' case. In $ 3 we use an 
extension of the same method to study the perturbed case and discuss the operator 
algebra involved in our calculations. In passing we will make full use of a little-known 
theorem by Magnus (1954), which turns out to be very effective in simplifying the 
increasing complexity of the calculation. In $ 4  we discuss the perturbative solution 
obtained and make a few final remarks on its region of validity. 

2. Mathematical preliminaries 

The generalised R N  equations may be written in the form (Stenholm and Bambini 
1981, Shore and Eberly 1978, Letokhov and Makarov 1976) 

i dcl / d r  = ( a  + ~ 1 )  /cl + R( c , + ~  + c ~ - ~ )  (2.1) 

c , (O)  = Sl.0. (2.2) 

where 1 is an integer number and the initial conditions are set by 

We refer to (2.1) as the generalised form because in Raman and Nath (1936) only 
the a = 0 case was considered. 

An exact solution of (2.1) is beyond the scope of this paper and perhaps not even 
obtainable in terms of known functions. We will only look at perturbative solutions 
when the parameter CL is small compared with a. The reason for this choice is not 
only mathematical but also physical: many of the problems for which these equations 
are of interest share this common feature. 

The first step in our procedure consists in determining the analytical solutions of 
(2.1) in the 'unperturbed' limit, when = 0. It is well known that such a solution is 
already available in terms of Bessel functions. Macke (1979) has solved this same 
problem in his paper on optical nutation. We prefer to employ a new, more straightfor- 
ward technique, which will turn out to be very effective in dealing with the perturbed 
case also. Let us then introduce two shifting operators E*,  which act on any function 
of 1 according to the rule 

E'fi =f1*1. (2.3a) 

This definition can be naturally generalised to any shift n by a similar relation 

E*"fi =f i+n .  (2.36) 

Let us now set 

cl(x) = (-i)'Ml(x) exp(-iplx) (2.4) 
where x = 07 and p = a/a. Inserting this expression into (2.1) with p = 0 and taking 
advantage of (2.3) we then find 

dM,/dx = [exp(ipx)E--exp(-ipx)E')M,(x) (2 .5)  
with the initial conditions Ml(0) = ilSl,o. 

The formal solution of the above equation does not present any particular difficulty, 
since the two operators E' commute, and we do  not have to worry therefore about 
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'time' ordered products. We can formally write 

Again using [E', E-] = 0 we can disentangle the exponential without making use of 
the Weyl-Baker-Hausdorff (WBH) formula and obtain 

sin( px/ 2) 

Using the definition (2.36) we finally find 
(2.7) 

(2.8) 
where JI (  a )  is the Bessel function of order 1 of the argument in parentheses. 

Combining this result with (2.4) we get the expression 

which is precisely Macke's (1979) result. 

realistic physical situations, in which case if (2.2) is generalised to 
One may also consider relaxing the initial conditions to take into account more 

(2.10) 

f~ being any discrete distribution, the final result, after some simple algebra, could 
then be expressed as 

(2.11) 

We now proceed to the study of the general case, i.e. p # 0. 

3. Perturbative solution 

The limit of applicability of our formalism to specific problems in physics will be 
discussed in a forthcoming paper. Here we simply assume that an expansion in powers 
of a small parameter is possible. 

When p is not zero we can still use a transformation of the type adopted in (2.4). 
By a natural generalisation we set 

(3.1) c r ( x )  = (-i)'Mf(x) exp[-i(P + p l ) l x ]  

where p = p/R.  
Inserting (3.1) in (2.1) gives 

dM,(x)/dx ={exp[+i[P +p(21- l)lx]E--exp[-i[p +p(2 l+  l)lx]Ef}M1(x). (3.2) 
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Having assumed that cc. << n, we can expand the RHS to first order in p and find 

where the ‘transfer’ operator f ( x )  can be expressed as 

f ( x )  = b x  sin($x)+i[sin($x)+21px cos($x)]}F+ 

+ i b x  cos($x) + i[cos($x) - 21px sin(ipx )]}F-. (3.4) 

The new operators F,  just introduced are defined as 

F,  = E’ exp(-ipx/2) f E -  exp(+ipx/2). (3.5) 

Although (3.3) resembles (2.5), the same straightforward method of integration would 
not work here. The reason for this is the fact that the new operator T(x) does not 
commute with itself at different times, as is rather easy to verify. We must therefore 
be careful with time ordering considerations. 

The formal solution of (3.3) can be written as 

where [ , ]+ is a shorthand notation implying time ordering. We can bypass the usual 
complications associated with the Feynman-Dyson expansion employing Wick’s time 
ordering techniques if we make use of a theorem by Magnus (1954), not very well 
known to the physicists’ community. In 1954 he proved the following expansion: 

[ CXP( lox dx‘ fb’))] + = exp( lox dx’ f ( x ‘ )  +i  lox dx‘ [ f ( x ’ ) ,  1:’ dxff f ( x ” ) ]  + , . .). 
(3.7) 

We stress that such an expansion is the continuous generalisation of the WBH formula, 
as already pointed out by Pechukas and Light (1966). The commutators entering 
(3.7) are in fact similar in structure and numerical coefficients to those found in that 
formula. In our case the higher-order terms turn out to be all vanishing because the 
first commutator is a c-number. 

The explicit evaluation of the various terms in (3.7) will involve the commutator 
algebra of the operators F, introduced earlier. It is worthwhile to present a table of 
the commutators used in the course of the calculation: they are 

[F+, lF+]=F+F-, [F+, IF-] = F?,  [F-, IF+] = F:, 

[F-, IF-] = F+F-, [F,, F-] = 0. (3.8) 

Here I is the same symbol which labels each coefficient Cr in (2.1). To give an idea 
of how commutators (3.8) have been evaluated, let us consider the action of e.g. the 
first one on any function of I ,  namely 

IF+, l F + l f ~ =  (F+lF+ -1F: )f~ =f1+2 exp(-ipx) - f l - 2  exp(ipx) = F+F-f, 

and similarly for the remaining ones. 
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Proceeding now to the explicit calculation of the terms appearing in (3.7), we 
notice that the first one is straightforward: 

The second one, after some tedious algebra, turns out to be equal to 

The functions Q ( x ) ,  R ( x )  are defined below: 

Q( x)  = p-3( px -sin p x )  
R ( x )  = (2/p3)[-px( 1 +cos P X )  + 2 sin p x ] .  

(3.10) 

(3.11) 

We can ignore the higher-order terms in the expansion (3.7) because, to first order 
in p, the commutators vanish. 

The terms appearing in the exponent of the operator equation (3.6) consist of two 
sections: one independent of p and one proportional to it, i.e. 

M I  (x ) = expEi 1 (x + p i ~ x  )]i'a,,o (3.12) 

(3.13) 

Since i l ( x )  and i 2 ( x )  are not commuting quantities and since we neglect contributions 
in p 2 ,  applying the WBH formula, we get 

M d x )  = exp[i l (x)I  exp[ p i2(x) I  expi- $ p [ i , ( x ) ,  i 2 ( x ) l )  i[61,0. (3.14) 

We can now expand the exponents containing p up to the first order. Exploiting the 
properties of the F,  operators and applying straightforwardly the procedure leading 
to (2.9), we find 

(3.15) 

(3.16~1) 
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(3.16b) 

Here we have used the notation Jn( * )  =Jfl(2R[sin(a~/2)] /a /2)  for simplicity. The 
various functions of T appearing in (3.16a, b) (g(7), h ( ~ ) )  are defined in terms of the 
previous expressions (3.1 l ) ,  namely they can be obtained directly from (Q( x), R( x)) 
by replacing fl with a and x with 7. The previous results are the basis of numerical 
work that is in progress now. Again, as was done in 0 2, we can generalise our formalism 
to take into account more general initial conditions: this leads to the relation 

(3.17) 

having called cf!’,, the solutions for the initial conditions (2.2). 

cf( T )  = J[( ) - ipr27J,(. ) + iqpi17~[(21+ 1 ) ~ ~ + ~ (  e )  + (21 - I)J,-~( e ) ]  

It is easy to take the a + 0 limit in our expression, and the result is found to be 

- 3 i p . ’ ~ ~ [ 5 ~ + ~ ( ’ ) + ~ ~ - ~ (  - ) + 2 ~ ~ ( . ) ]  (3.18) 

where the dot in the parentheses stands for 2527. This is the same result found in 
Berry (1966), and has been rederived here as a check of our calculations. 

4. Conclusion 

The method outlined here offers a relatively direct, although not trivial, perturbative 
way to solve a particular set of recursive differential equations. We claim that by using 
this formalism one can bypass the rather involved analytical techniques which make 
use of the quasi-energy method (Fedorov 1977a, b) after reducing the RN system to 
the Mathieu equation. Our procedure could certainly be extended to higher orders 
in the small parameter p. The algebra, however, then becomes very cumbersome, 
due to the proliferation of commutators that were neglected to first order. When 
looking for higher-order solutions the simplification allowed by the WBH formula is 
no longer available and a more sophisticated version of it, the so-called Zassenhaus 
expansion (Magnus 19641, must then be used. 
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